DRAFT
How: Construct a model that predicts whether an individual makes more than 50k/yr, a value associated with being a candidate for giving donations
Data Source: 1994 US Census Data UCI Machine Learning Repository
Note: Datset donated by Ron Kohavi and Barry Becker, from the article "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid". Small changes to the dataset have been made, such as removing the 'fnlwgt'
feature and records with missing or ill-formatted entries.
1.1 Data Dictionary
1.2 Simple Cleaning
1.3 Summary Statistics
1.4 Distributions
1.5 Skew and Variance
1.6 Relationships
2.1 Separate Labels from Factors
2.2 Transformation2.2.1 Indicator Variables
2.2.2 Impact
2.2.3 Logarithmic Transform
2.2.4 Normalization and Standardization2.4 Pipeline
3.Metrics
3.1 Accuracy
3.2 Precision
3.3 Recall
3.4 F$\beta$-Score
4.Models
4.1 Selection
4.2.1 Application
4.3 Model Application Pipeline
4.4.1 Application
4.4.2 Tuning4.5 Random Forest
4.5.1 Application
4.5.2 Tuning4.6 Ada Boost
4.6.1 Application
4.6.2 Tuning4.7 Gradient Boost
4.7.1 Application
4.7.2 Tuning4.8.1 Application
4.8.2 Tuning4.9.1 Application
4.9.2 Tuning4.10 Comparison
4.10.1 Feature Importance
4.10.2 Selection
4.10.3 Comp: Reduced Feature Model Performance
5.Summary
import numpy as np # Library for numerical computing with Python
import pandas as pd # Library to work with data in tabular form and the like
from time import time # Package to work with time values
from multiprocessing import Pool # Library for taking advantage of CPU
from IPython.display import display # Allows the use of display() for DataFrames
import matplotlib.pyplot as plt # Package for plotting
import seaborn as sns # Library for plotting, prettier than matplotlib
import visuals as vs # Adapted from Udacity
import visualization # Module for creating plots more simply
import plotly.graph_objects as go # Interactive plots
import plotly.express as px # Interactive plots
from plotly.subplots import make_subplots # Interactive plots
from dython.nominal import associations # Categorical plots
import modeling # Module for simplifying modeling items
import statsmodels.api as sm # Statistical analysis toolbox
from scipy.stats import skew # Tool to evaluate statistical measure
from sklearn.preprocessing import MinMaxScaler # Feature scaling tool
from sklearn.model_selection import train_test_split, GridSearchCV # Data splitting and tuning
from sklearn.naive_bayes import MultinomialNB # Naive Bayes Classifier model
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV # Logistic Regression model
from sklearn.svm import SVC # Support Vectorm Machine
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier # Ensemble models
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import fbeta_score, accuracy_score, make_scorer # Model metrics
from sklearn.base import clone
import xgboost as xgb
# iPython Notebook formatting
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
# Account for changes made to imported packages
%load_ext autoreload
%autoreload 2
data = pd.read_csv("census.csv")
Standardizing factor names by PEP8 Naming Convention Standards can be helpful.
There are a number of categorical variables. Handling those with one-hot encoding can be helpful.
name_changes = {x: x.lower().replace("-", "_") for x in data.columns.tolist() if "-" in x}
data = data.rename(columns=name_changes)
data.info(null_counts=True) # Show information for each factor: NaN counts and data-type of column
data.describe(include='all').T # Summarize each factor, transpose the summary
n_records = data.shape[0] # First element of .shape indicates n
n_greater_50k = data[data['income'] == '>50K'].shape[0] # n of those with income > 50k
n_at_most_50k = data.where(data['income'] == '<=50K').dropna().shape[0] # .where() requires dropping na for this
greater_percent = round((n_greater_50k / n_records)*100,2) # Show proportion of > 50k to whole data
data_details = {"Number of observations": n_records,
"Number of people with income > 50k": n_greater_50k,
"Number of people with income <= 50k": n_at_most_50k,
"Percent of people with income > 50k": greater_percent} # Cache values of analysis
for item in data_details: # Iterate through the cache
print("{0}: {1}".format(item, data_details[item])) # Print the values
fig = px.histogram(data, x="income", nbins=2)
fig.update_layout(height=600, width=750,
title_text="Distribution of Income",
showlegend=False)
fig.update_yaxes(title_text="Number of Records")
fig.show()
fig = px.histogram(data, x="age", nbins=data['age'].nunique(), color='income', opacity=0.75)
fig.update_layout(height=600, width=750,
title_text="Distribution of Age",
showlegend=True)
fig.update_yaxes(title_text="Number of Records")
fig.update_xaxes(title_text="Age")
fig.show()
column = "workclass"
separator = "income"
fig_title = "Distribution of Workclass"
x_title = "Classification of Workclass"
wc_fig = visualization.dist_vis(data=data, column=column, separator=separator, fig_title=fig_title, legend=True)
wc_fig.show()
column = "education_level"
separator = "income"
fig_title = "Distribution of Education"
x_title = "Classification of Education"
ed_fig = visualization.dist_vis(data=data, column=column, separator=separator, fig_title=fig_title, legend=True)
ed_fig.show()
column = "marital_status"
separator = "income"
fig_title = "Distribution of Marital-Status"
x_title = "Classification of Marital-Status"
mar_fig = visualization.dist_vis(data=data, column=column, separator=separator, fig_title=fig_title, legend=True)
mar_fig.show()
column = "occupation"
separator = "income"
fig_title = "Distribution of Occupation"
x_title = "Classification of Occupation"
occ_fig = visualization.dist_vis(data=data, column=column, separator=separator, fig_title=fig_title, legend=True)
occ_fig.show()
column = "relationship"
separator = "income"
fig_title = "Distribution of Relationship"
x_title = "Classification of Relationship"
rel_fig = visualization.dist_vis(data=data, column=column, separator=separator, fig_title=fig_title, legend=True)
rel_fig.show()
column = "race"
separator = "income"
fig_title = "Distribution of Race"
x_title = "Classification of Race"
race_fig = visualization.dist_vis(data=data, column=column, separator=separator, fig_title=fig_title, legend=True)
race_fig.show()
column = "sex"
separator = "income"
fig_title = "Distribution of Sex"
x_title = "Classification of Sex"
sex_fig = visualization.dist_vis(data=data, column=column, separator=separator, fig_title=fig_title, legend=True)
sex_fig.show()
column = "hours_per_week"
separator = "income"
fig_title = "Distribution of Hours-per-Week"
x_title = "Classification of Hours-per-Week"
hpw_fig = visualization.dist_vis(data=data, column=column, bars=10, separator=separator, fig_title=fig_title, legend=True)
hpw_fig.show()
sns.set_context("paper", rc={"font.size":16,
"axes.titlesize":16,
"axes.labelsize":16,
"lines.linewidth": 2.5,
"legend.fontsize":12})
sns.pairplot(data[['income', 'age', 'education_num', 'hours_per_week']],
kind="reg",
hue='income',
height=4,
plot_kws=dict(scatter_kws=dict(s=9)))
plt.show()
The features capital_gain
and capital_loss
are positively skewed (i.e. have a long tail in the positive direction).
To reduce this skew, a logarithmic transformation, $\tilde x = \ln\left(x\right)$, can be applied. This transformation will reduce the amount of variance and pull the mean closer to the center of the distribution.
Why does this matter: The extreme points may affect the performance of the predictive model.
Why care: We want an easily discernible relationship between the independent and dependent variables; the skew makes that more complicated.
Why DOESN'T this matter: The distribution of the independent variables is not an assumption of most models, but the distribution of the residuals and homoskedasticity of the independent variable, given the independent variables, $E\left(u | x\right) = 0$ where $u = Y - \hat{Y}$ is of linear regression. In this analysis, the dependent variable is categorical (i.e. discrete or non-continuous) and linear regression is not an appropriate model.
cap_loss = data['capital_loss']
cap_gain = data['capital_gain']
cap_loss_skew, cap_loss_var, cap_loss_mean = skew(cap_loss), np.var(cap_loss), np.mean(cap_loss)
cap_gain_skew, cap_gain_var, cap_gain_mean = skew(cap_gain), np.var(cap_gain), np.mean(cap_gain)
fac_df = pd.DataFrame({'Feature': ['Capital Loss', 'Capital Gain'],
'Skewness': [cap_loss_skew, cap_gain_skew],
'Mean': [cap_loss_mean, cap_gain_mean],
'Variance': [cap_loss_var, cap_gain_var]})
display(fac_df)
fig = make_subplots(rows=2, cols=1)
fig.update_layout(height=800, width=850,
title_text="Skewed Distributions of Continuous Census Data Features",
showlegend=False
)
fig.add_trace(
go.Histogram(x=data['capital_loss'], nbinsx=25,
name='Capital-Loss'),
row=1, col=1
)
fig.add_trace(
go.Histogram(x=data['capital_gain'], nbinsx=25,
name='Capital-Gain'),
row=2, col=1
)
fig.update_xaxes(title_text="Capital-Loss Feature Distribution", row=1, col=1)
fig.update_xaxes(title_text="Capital-Gain Feature Distribution", row=2, col=1)
for i in range(1,5):
fig.update_yaxes(title_text="Number of Records", range=[0, 2000],
patch = dict(
tickmode = 'array',
tickvals = [0, 500, 1000, 1500, 2000],
ticktext = [0, 500, 1000, 1500, ">2000"]),
row=i, col=1)
fig.show()
Toward determing what factors should be included in the model, there is something to note with regard to categorical versus continuous variables.
Correlation is defined as: $$r = \frac{\sum\left(X-\bar{X}\right)\cdot\left(Y-\bar{Y}\right)}{\sqrt{(\sum\left(X-\bar{X}\right)^{2})}\cdot\sqrt{\sum\left(Y-\bar{Y}\right)^{2}}}$$
This is inconsistent with categorical variables. Instead, it can be useful to utilize the uncertainty coefficient, or Thiel's Index.
Where we have entropy of a single distribution:
$$H\left(X\right)=-\sum_{x} P_{x}\left(x\right)log\ P_{x}\left(x\right)$$Conditional entropy as:
$$H\left(X|Y\right) = - \sum_{x,y} P_{X,Y}\left(x,y\right)log\ P_{X|Y}\left(x|y\right)$$and the uncertainty coefficient as:
$$U\left(X|Y\right)=\frac{H\left(x\right)-H\left(X|Y\right)}{H\left(X\right)} = \frac{I\left(X;Y\right)}{H\left(X\right)}$$Where $I\left(X;Y\right)$ is the mutual information, or the amount of information obtained about one random variable through observing the other random variable.
To quote Shaked Zychlinski, "given the value of x, how many possible states does y have, and how often do they occur".
So, can this help us discenr some information about what to do with our factors?
I will step forward now with the idea that colinearity, where one variable can easily be derived from another within the model, is not desired (i.e. two variables with strong relationships on one another should not be included as they may reduce the predictive power of the model).
Citation: Shaked Zychlinski
A model including:
age
and marital_status
(0.56)
age
&income
is 0.24marital_status
&income
is 0.20
dropmarital_status
age
and relationship
(0.46)
age
andincome
is 0.24relationship
andincome
is 0.21- drop
relationship
education_num
and occupation
(0.57)
education_num
andincome
is 0.33occupation
andincome
is 0.11- drop
occupation
marital_status
and relationship
(0.49)
- already determined that
marital_status
andrelationship
would be dropped from model
associations(dataset=data, mark_columns=True, theil_u=True, figsize=(15,15), cmap='coolwarm')
plt.show()
2.1 Separate Labels from Factors
2.2 Transformation
2.2.1 Indicator Variables
2.2.2 Logarithmic Transform
2.2.3 Impact
2.2.4 Normalization and Standardization
For training an algorithm, it is useful to separate the label
, or dependent variable ($Y$) from the rest of the data training_features
, or independent variables ($X$).
Y = data['income']
X = data.drop(['income'], axis=1)
A common way to handle categorical variables is to make indicator, or dummy, variables from the values of the factors.
Pandas
has a simple method, .get_dummies()
, that can perform this very quickly.
Further, this will create a new variable for every value a categorical variable takes as demonstrated in this example:
someFeature | someFeature_A | someFeature_B | someFeature_C | ||
---|---|---|---|---|---|
0 | B | 0 | 1 | 0 | |
1 | C | ----> one-hot encode ----> | 0 | 0 | 1 |
2 | A | 1 | 0 | 0 |
Which means the p
, or number of factors, will grow, and can do so potentially in a large way. Specifically, if p
is the number of factors and pI
is the number of factors after creating indicator variables:
$$pI = p + \left(number\ of\ distinct\ categories\right) \cdot \left(number\ of\ categorical\ variables\right)$$
It is also worth noting that for modeling, it is important that once value of the factor, a "base case", be dropped from the data. This is because the base case is redundant, i.e. can be infered perfectly from the other cases, and, more specifically and more detrimental to our model, it leads to multicollinearity of the terms.
In some models (e.g. logistic regression, linear regression), an assumption of no multicollinearity must hold.
So, the final number of factors after creating indicator variables and dropping the base case is: $$\tilde{p}=pI - \left(number\ of\ categorical\ variables\right)$$
factors = ['age', 'workclass', 'education_level', 'education_num', 'marital_status',
'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss',
'hours_per_week', 'native_country']
unencoded = len(list(X.columns))
X = pd.get_dummies(X[factors], drop_first=True) # Create dummies, dropping the base case
Y = (Y == '>50K').apply(lambda x: x*1)
encoded = len(list(X.columns))
print("{} total features before one-hot encoding.".format(unencoded))
print("{} total features after one-hot encoding.".format(encoded))
To reduce skew, a logarithmic transformation, $\tilde x = \ln\left(x\right)$, can be applied. This transformation will reduce the amount of variance and pull the mean closer to the center of the distribution.
The logarithmic transformation reduced the skew and the variance of each factor.
Feature | Skewness | Mean | Variance |
---|---|---|---|
Capital Loss | 4.516154 | 88.595418 | 163985.81018 |
Capital Gain | 11.788611 | 1101.430344 | 56345246.60482 |
Log Capital Loss | 4.271053 | 0.355489 | 2.54688 |
Log Capital Gain | 3.082284 | 0.740759 | 6.08362 |
skewed = ['capital_gain', 'capital_loss']
X_log_transformed = pd.DataFrame(data=X).copy()
X_log_transformed[skewed] = X[skewed].apply(lambda x : np.log(x + 1))
fac_1 = {'column_name': 'capital_loss',
'title': 'Log of Capital-Loss',
'x_axis': "Log of Capital-Loss Feature Distribution"}
fac_2 = {'column_name': 'capital_gain',
'title': 'Log of Capital-Gain',
'x_axis': "Log of Capital-Gain Feature Distribution"}
log_compare = visualization.comp_dist(data=X_log_transformed, fac_1 = fac_1, fac_2 = fac_2)
log_compare.show()
log_cap_loss_skew = skew(X_log_transformed['capital_loss'])
log_cap_loss_var = round(np.var(X_log_transformed['capital_loss']),5)
log_cap_loss_mean = np.mean(X_log_transformed['capital_loss'])
log_cap_gain_skew = skew(X_log_transformed['capital_gain'])
log_cap_gain_var = round(float(np.var(X_log_transformed['capital_gain'])),5)
log_cap_gain_mean = np.mean(X_log_transformed['capital_gain'])
log_fac_df = pd.DataFrame({'Feature': ['Log Capital Loss', 'Log Capital Gain'],
'Skewness': [log_cap_loss_skew, log_cap_gain_skew],
'Mean': [log_cap_loss_mean, log_cap_gain_mean],
'Variance': [log_cap_loss_var, log_cap_gain_var]})
fac_df = fac_df.append(log_fac_df, ignore_index=True)
fac_df['Variance'] = fac_df['Variance'].apply(lambda x: '%.5f' % x)
display(fac_df)
fig = make_subplots(rows=4, cols=1)
fig.update_layout(height=800, width=850,
title_text="Comparison of Distributions of Continuous Census Data Features",
showlegend=False
)
fig.add_trace(
go.Histogram(x=X['capital_loss'], nbinsx=25,
name='Capital-Loss'),
row=1, col=1
)
fig.add_trace(
go.Histogram(x=X_log_transformed['capital_loss'], nbinsx=25,
name='Log of Capital-Loss'),
row=2, col=1
)
fig.add_trace(
go.Histogram(x=X['capital_gain'], nbinsx=25,
name='Normalized Capital-Gain'),
row=3, col=1
)
fig.add_trace(
go.Histogram(x=X_log_transformed['capital_gain'], nbinsx=25,
name='Capital-Gain'),
row=4, col=1
)
fig.update_xaxes(title_text="Capital-Loss Feature Distribution", row=1, col=1)
fig.update_xaxes(title_text="Log of Capital-Loss Feature Distribution", row=2, col=1)
fig.update_xaxes(title_text="Capital-Gain Feature Distribution", row=3, col=1)
fig.update_xaxes(title_text="Log of Capital-Gain Feature Distribution", row=4, col=1)
for i in range(1,5):
fig.update_yaxes(title_text="Number of Records", range=[0, 2000],
patch = dict(
tickmode = 'array',
tickvals = [0, 500, 1000, 1500, 2000],
ticktext = [0, 500, 1000, 1500, ">2000"]),
row=i, col=1)
fig.show()
Originally, the influence of capital_loss
on income
was statistically significant, but after the logarithmic transformation, it is not.
Here it can be seen that with a change to the skew, the confidence interval now passes through zero whereas before it did not.
This passing through zero is interpreted as the independent variable being statistically indistinguishable from zero influence on the dependent variable.
train_0 = X['capital_loss']
logit_0 = sm.Logit(Y, train_0)
train_1 = X_log_transformed['capital_loss']
logit_1 = sm.Logit(Y, train_1)
# fit the model
result_0 = logit_0.fit(disp=0)
result_1 = logit_1.fit(disp=0)
# Results
print()
print("Original model")
print(result_0.summary2())
print()
print("Transformed model")
print(result_1.summary2())
These two terms, normalization and standardization, are frequently used interchangably, but have two different scaling purposes.
Earlier, capital_gain
and capital_loss
were transformed logarithmically, reducing their skew, and affecting the model's predictive power (i.e. ability to discern the relationship between the dependent and independent variables).
Another method of influencing the model's predictive power is normalization of independent variables which are numerical. Whereafter, each featured will be treated equally in the model.
However, after scaling is applied, observing the data in its raw form will no longer have the same meaning as before.
Note the output from scaling. age
is no longer 39
but is instead 0.30137
. This value is meaningful only in context of the rest of the data and not on its own.
scaler = MinMaxScaler(feature_range=(0, 1)) # default=(0, 1)
numerical = ['age', 'education_num', 'capital_gain', 'capital_loss', 'hours_per_week']
X_log_minmax = pd.DataFrame(data = X_log_transformed).copy()
X_log_minmax[numerical] = scaler.fit_transform(X_log_transformed[numerical])
print("Original Data")
display(X.head(1))
# Show an example of a record with scaling applied
print("=" * 86)
print("Scaled Data")
display(X_log_minmax.head(1))
# Preserve final X transformation:
X_trans = X_log_minmax
fig = make_subplots(rows=4, cols=1)
fig.update_layout(height=800, width=850,
title_text="Comparison of Distributions of Continuous Census Data Features",
showlegend=False)
fig.add_trace(
go.Histogram(x=X_log_transformed['capital_loss'], nbinsx=25,
name='Log of Capital-Loss'),
row=1, col=1)
fig.add_trace(
go.Histogram(x=X_log_minmax['capital_loss'], nbinsx=25,
name='Normalized Capital-Loss'),
row=2, col=1)
fig.add_trace(
go.Histogram(x=X_log_transformed['capital_gain'], nbinsx=25,
name='Log of Capital-Gain'),
row=3, col=1)
fig.add_trace(
go.Histogram(x=X_log_minmax['capital_gain'], nbinsx=25,
name='Normalized Capital-Gain'),
row=4, col=1)
fig.update_xaxes(title_text="Log of Capital-Loss Feature Distribution", row=1, col=1)
fig.update_xaxes(title_text="Normalized Capital-Loss Feature Distribution", row=2, col=1)
fig.update_xaxes(title_text="Log of Capital-Gain Feature Distribution", row=3, col=1)
fig.update_xaxes(title_text="Normalized Capital-Gain Feature Distribution", row=4, col=1)
for i in range(1,5):
fig.update_yaxes(title_text="Number of Records", range=[0, 2000],
patch = dict(
tickmode = 'array',
tickvals = [0, 500, 1000, 1500, 2000],
ticktext = [0, 500, 1000, 1500, ">2000"]),
row=i, col=1)
fig.show()
After transforming with one-hot-encoding, all categorical variables have been converted into numerical features. Earlier, they were normalized (i.e. scaled between 0 and 1).
Next, for training a machine learning model, it is necessary to split the data into segments. One segment will be used for training the model, the training set, and the other set will be for testing the mode, the testing set.
A common method of splitting is to segment based on proportion of data. A general 80:20 rule is typical for training:test.
sklearn
has a method that works well for this, .model_selection.train_test_split
. Essentially, this randomly selects a portion of the data to segment to a training and to a testing set.
random_state
: By setting a seed, option random_state
, we can ensure the random splitting is the same for our model. This is necessary for evaluating the effectiveness of the model. Otherwise, we would be training and testing a model with the same proportional split (if we kept that static), but with different observations of the data.
test_size
: This setting represents the proportion of the data to be tested. Generally, this is the complement (1 - x = c
) of the training_size
. For example, if test_size
is 0.2
, the test_size
is 0.8
.
stratify
: Preserves the proportion of the label class in the split data. As an example, let 1
and 0
indicate the positive and negative cases of a label, respectively. It's possible that only positive or only negative classes exisst in either training or testing set (e.g. $\forall y \in Y_{train}, y = 1$). Better than avoid this worst case scenario, stratify
will preserve the ratio of positive to negative classes in each training and testing set.
Here the data is split 80:20 with a seed set of 0
and the distribution of the label's classes preserved:
X_train, X_test, y_train, y_test = train_test_split(X_trans, Y, random_state=0, test_size=0.2, stratify=Y)
original_ratio = round(Y.value_counts()[1] / Y.value_counts()[0],2)
train_ratio = round(y_train.value_counts()[1] / y_train.value_counts()[0], 2)
test_ratio = round(y_test.value_counts()[1] / y_test.value_counts()[0], 2)
print('Original ratio of positive-to-negative classes: {}'.format(original_ratio))
print('Training ratio of positive-to-negative classes: {}'.format(train_ratio))
print('Testing ratio of positive-to-negative classes: {}'.format(test_ratio))
columns_to_keep = ['age', 'education_num', 'capital_gain', 'capital_loss',
'hours_per_week', 'workclass_ Local-gov', 'workclass_ Private',
'workclass_ Self-emp-inc', 'workclass_ Self-emp-not-inc',
'workclass_ State-gov', 'workclass_ Without-pay',
'education_level_ 11th', 'education_level_ 12th',
'education_level_ 1st-4th', 'education_level_ 5th-6th',
'education_level_ 7th-8th', 'education_level_ 9th',
'education_level_ Assoc-acdm', 'education_level_ Assoc-voc',
'education_level_ Bachelors', 'education_level_ Doctorate',
'education_level_ HS-grad', 'education_level_ Masters',
'education_level_ Preschool', 'education_level_ Prof-school',
'education_level_ Some-college', 'race_ Asian-Pac-Islander', 'race_ Black',
'race_ Other', 'race_ White', 'sex_ Male', 'native_country_ Canada',
'native_country_ China', 'native_country_ Columbia',
'native_country_ Cuba', 'native_country_ Dominican-Republic',
'native_country_ Ecuador', 'native_country_ El-Salvador',
'native_country_ England', 'native_country_ France',
'native_country_ Germany', 'native_country_ Greece',
'native_country_ Guatemala', 'native_country_ Haiti',
'native_country_ Holand-Netherlands', 'native_country_ Honduras',
'native_country_ Hong', 'native_country_ Hungary',
'native_country_ India', 'native_country_ Iran',
'native_country_ Ireland', 'native_country_ Italy',
'native_country_ Jamaica', 'native_country_ Japan',
'native_country_ Laos', 'native_country_ Mexico',
'native_country_ Nicaragua',
'native_country_ Outlying-US(Guam-USVI-etc)', 'native_country_ Peru',
'native_country_ Philippines', 'native_country_ Poland',
'native_country_ Portugal', 'native_country_ Puerto-Rico',
'native_country_ Scotland', 'native_country_ South',
'native_country_ Taiwan', 'native_country_ Thailand',
'native_country_ Trinadad&Tobago', 'native_country_ United-States',
'native_country_ Vietnam', 'native_country_ Yugoslavia']
X_train_sub = X_train[columns_to_keep].copy()
X_test_sub = X_test[columns_to_keep].copy()
print("Number of Factors without removing high associations: {}".format(len(X_train.columns)))
print("Number of Factors after removing high associations: {}".format(len(X_train_sub.columns)))
print("Reduced by: {}".format(len(X_train.columns) - len(X_train_sub.columns)))
X_trans_0, X_train_0, X_test_0, y_train_0, y_test_0 = modeling.eng_pipe(data)
print("Transformed data is equivalent in steps and pipeline: {}".format(X_trans.equals(X_trans_0)))
print("X_train is equivalent in steps and pipeline: {}".format(X_train.equals(X_train_0)))
print("X_test is equivalent in steps and pipeline: {}".format(X_test.equals(X_test_0)))
print("y_train is equivalent in steps and pipeline: {}".format(y_train.equals(y_train_0)))
print("y_test is equivalent in steps and pipeline: {}".format(y_test.equals(y_test_0)))
3.1 Accuracy
3.2 Precision
3.3 Recall
3.4 F$\beta$-Score
In terms of income as a predictor for donating, CharityML has stated they will most likely receive a donation from individuals whose income is in excess of 50,000/yr.
CharityML has limited funds to reach out to potential donors. Misclassifying a person as making more than 50,000yr is COSTLY for CharityML. It's more important that the model accurately predicts a person making more than 50,000/yr (i.e. true-positive) than accidentally predicting they do when they don't (i.e. false-positive).
Accuracy is a measure of the correctly predicted data points to total amount of data points:
$$Accuracy=\frac{\sum Correctly\ Classified\ Points}{\sum All\ Points}=\frac{\sum True\ Positives + \sum True\ Negatives}{\sum Observations}$$A Confusion Matrix demonstrates what a true/false positive/negative is:
Predict 1 | Predict 0 | |
---|---|---|
True 1 | True Positive | False Negative |
True 0 | False Positive | True Negative |
The errors of these are sometimes refered to as type errors
:
Predict 1 | Predict 0 | |
---|---|---|
True 1 | True Positive | Type 2 Error |
True 0 | Type 1 Error | True Negative |
For this analysis, we want to avoid false positives or type 1 errors. Put differently, we prefer false negatives to false positives.
A model that meets that criteria, $False\ Negative \succ False\ Positive$, is known as preferring precision over recall, or is a high precision model.
Humorously and perhaps more understandably, these type errors can be demonstrate as such:
Precision is a measure of the amount of correctly predicted positive class to the amount of positive class predictions (correct as well as incorrect predictions of positive class):
$$Precision = \frac{\sum True\ Positives}{\sum True\ Positives + \sum False\ Positives}$$A model which avoids false positives would have a high precision value, or score. It may also be skewed toward false negatives.
Recall, sometimes refered to as a model's sensitivity, is a measure of the correctly predicted positive classes to the actual amount of positive classes (true positive and false negatives are each actual positive classes):
$$Recall = \frac{\sum True\ Positives}{\sum Actual\ Positives} = \frac{\sum True\ Positives}{\sum True\ Positives + \sum False\ Negatives}$$A mode which avoids false negatives would have a high recall value, or score. It may also be skewed toward false positives
An F-$\beta$ Score is a method of scoring a model both on precision and recall.
Where $\beta \in [0,\infty)$:
$$F_{\beta} = \left(1+\beta^{2}\right) \cdot \frac{Precision\ \cdot Recall}{\beta^{2} \cdot Precision + Recall}$$When $\beta = 0$, we get precision: $$F_{\beta=0} = \left(1+0^{2}\right) \cdot \frac{Precision\ \cdot Recall}{0^{2} \cdot Precision + Recall} = \left(1\right) \cdot \frac{Precision\ \cdot Recall}{Recall} = Precision$$
When $\beta = 1$, we get a harmonized mean of precision and recall:
$$F_{\beta=1} = \left(1+1^{2}\right) \cdot \frac{Precision\ \cdot Recall}{1^{2} \cdot Precision + Recall} = \left(2\right) \cdot \frac{Precision\ \cdot Recall}{Precision + Recall}$$... and when $\beta > 1$, we get something closer to recall:
$$F_{\beta \rightarrow \infty} = \left(1+\beta^{2}\right) \cdot \frac{Precision\ \cdot Recall}{\beta^{2} \cdot Precision + Recall} = \frac{Precision\ \cdot Recall}{\frac{\beta^{2}}{1+\beta^{2}} \cdot Precision + \frac{1}{1+ \beta^{2}} \cdot Recall}$$As $\beta \rightarrow \infty$: $$\frac{Precision\ \cdot Recall}{\frac{\beta^{2}}{1+\beta^{2}} \cdot Precision + \frac{1}{1+ \beta^{2}} \cdot Recall} \rightarrow \frac{Precision \cdot Recall}{1 \cdot Precision + 0 \cdot Recall} = \frac{Precision}{Precision} \cdot Recall = Recall$$
4.1 Selection
4.2.1 Application
4.3 Model Application Pipeline
4.4.1 Application
4.4.2 Tuning4.5 Random Forest
4.5.1 Application
4.5.2 Tuning4.6 Ada Boost
4.6.1 Application
4.6.2 Tuning4.7 Gradient Boost
4.7.1 Application
4.7.2 Tuning4.8.1 Application
4.8.2 Tuning4.9.1 Application
4.9.2 Tuning4.10 Comparison
4.10.1 Feature Importance
4.10.2 Selection
Toward selecting the right model, I need to determine what sort of variable we are predicting ($Y$). Some questions worth asking:
Do I have a label?
Yes, $Y$ takes on two values,
0
and1
indicating<=50k
and>50k
respectively
Is the label discrete?
Yes, $Y$ exists in two states and not over a spectrum as a continuous variable
Do I have less than 100k observations?
Yes, I have 36,177 observations
Is this data textual?
No, this data is numerical and categorical defined specifically in their meanings (i.e. lacks the ambiguity of text data)
So, a model that predicts known categories (probability of known outcome, i.e. supervised learning with classification) is what I need.
SciKit-Learn offers this helpful decision path to guide me, but I will probably want to try other things as well.
The Naive Bayes Classifier will be used as a benchmark model for this work.
Bayes' Theorem is as such:
$$P\left(A|B\right) = \frac{P\left(B|A\right) \cdot P\left(A\right)}{P\left(B\right)}$$It is considered naive as it assumes each feature is independent of one another.
Bayes Theorem calculates the probability of an outcome (e.g. wether an individual recieves income exceeding 50k/yr), based on the joint probabilistic distributions of certain other events (e.g. any factors we include in the model).
As an example, I propose a model that always predicts an individual makes more than 50k/yr. This model has no false negatives; it has perfect recall (recall = 1
).
Note: The purpose of generating a naive predictor is simply to show what a base model without any intelligence would look like. When there is no benchmark model set, getting a result better than random choice is a similar starting point.
Since this model always predicts a 1
:
1
when 1
is true), equal to the sum of the label1
when 0
is true)0
when 0
is true) as no 0
s are ever predicted0
when 1
is true) as no 0
s are ever predictedNote: I set $\beta = \frac{1}{2}$ as I want to penalize false positives being costly for CharityML. Recall the implications of setting the values of $\beta$ from before
TP = np.sum(Y)
TN = 0
FP = len(Y) - TP
FN = 0
Beta = 1/2
accuracy = (TP + TN) / len(Y)
recall = TP / (TP + FN)
precision = TP / (TP + FP)
fscore = (1+Beta ** 2) * (precision * recall)/(((Beta ** 2) * precision) + recall)
print("Naive Predictor - Accuracy score: {:.4f}, F-score: {:.4f}".format(accuracy, fscore))
It can be useful to establish a routine for aspects related to modeling. This allows for standard comparison of outcomes generated from the same process.
def train_predict(learner, sample_size, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test):
"""
Pipeline to train, predict, and score algorithms
:param learner: the learning algorithm to be trained and predicted on
:param sample_size: the size of samples (number) to be drawn from training set
:param X_train: features training set
:param y_train: income training set
:param X_test: features testing set
:param y_test: income testing set
:return results: f-0.5 score, 0.5 chosen for high precision, avoiding false positives
"""
results = {}
# Fitting
start = time() # Get start time
learner.fit(X_train[:sample_size], y_train[:sample_size]) # Train model
end = time() # Get end time
results['train_time'] = end - start # Calculate the training time
# Predicting
start = time() # Get start time
predictions_test = learner.predict(X_test)
predictions_train = learner.predict(X_train[:300])
end = time() # Get end time
results['pred_time'] = end - start # Calculate the total prediction time
# Scoring
results['acc_train'] = accuracy_score(y_train[:300], predictions_train) # Training accuracy
results['acc_test'] = accuracy_score(y_test, predictions_test) # Testing accuracy
results['f_train'] = fbeta_score(y_train[:300], predictions_train, beta=0.5) # Training F-0.5 score
results['f_test'] = fbeta_score(y_test, predictions_test, beta=0.5) # Testing F-0.5 score
# User feedback
print("{} trained on {} samples.".format(learner.__class__.__name__, sample_size))
return results
def trainer(classifer, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test):
"""
Function to train each selected model in a routine fashion for comparison
:param classifier: classification model from Scikit-Learn to be trained
return step_results: outcome of training on the data and defined parameters
"""
step_results = {}
samples_100 = int(len(X_train))
samples_10 = int(len(X_train) / 10)
samples_1 = int(len(X_train) / 100)
clf_name = classifer.__class__.__name__
step_results[clf_name] = {}
for i,sample in enumerate([samples_1, samples_10, samples_100]):
step_results[clf_name][i] = train_predict(classifer, sample, X_train, y_train, X_test, y_test)
return step_results
def grid_tuner(classifier, parameters, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test):
"""
Function to tune with grid search in a routine fashion
:param classifier: classification model from Scikit-Learn to be trained
return best_predictions: estimator which gave highest score
"""
scorer = make_scorer(fbeta_score, beta=0.5)
grid_obj = GridSearchCV(estimator=classifier, param_grid=parameters, scoring=scorer)
grid_fit = grid_obj.fit(X_train, y_train)
best_classifier = grid_fit.best_estimator_
predictions = (classifier.fit(X_train, y_train)).predict(X_test)
best_predictions = best_classifier.predict(X_test)
outcomes = {'test_acc': accuracy_score(y_test, predictions),
'f_test': fbeta_score(y_test, predictions, beta = 0.5),
'tuned_acc': accuracy_score(y_test, best_predictions),
'f_tuned': fbeta_score(y_test, best_predictions, beta = 0.5),
'best_param': grid_fit.best_params_}
print("Initial Model:")
print("\t Accuracy: {:.4f}".format(outcomes['test_acc']))
print("\t F0.5-Score: {:.4f}".format(outcomes['f_test']))
print("Tuned Model:")
print("\t Accuracy: {:.4f}".format(outcomes['tuned_acc']))
print("\t F0.5-Score: {:.4f}".format(outcomes['f_tuned']))
print("Best Parameters:")
print("\t {}".format(outcomes['best_param']))
return outcomes
Logistic regression produces probabilites of independent variables indicating a dependent variable. The outcome of logistic regression is bound between 0 and 1 (i.e. $ h_{\theta}\left(X\right) \in \left[0,1\right]$).
$$ h_{\theta}\left(X\right) = P\left(Y=1 | X\right)= \left\{ \begin{array}{ll} y=1 & \frac{1}{1+e^{-\left(\theta^{T}X\right)}} \\ y=0 & 1 - \frac{1}{1+e^{-\left(\theta^{T}X\right)}} \\ \end{array} \right. $$With a cost function of: $$ cost\left(h_{\theta}\left(X\right)\right) = \left(h_{\theta}\left(X\right)\right) \cdot \left(1 - h_{\theta}\left(X\right)\right)$$
Deriving and Minimizing the Cost Function: How does $ cost\left(h_{\theta}\left(X\right)\right) = \left(h_{\theta}\left(X\right)\right) \cdot \left(1 - h_{\theta}\left(X\right)\right)$, fall out of $\frac{1}{1+e^{-\left(\theta^{T}X\right)}}$ ?
The following math involves a knowledge of some single variable differential calculus, $y = x^{n} \rightarrow \frac{\Delta y}{\Delta x} = -n\cdot x^{n-1}$, and the chain rule, $\frac{\Delta}{\Delta x}f\left(g\left(x\right)\right)= f'\left(g\left(x\right)\right) \cdot g'\left(x\right)$:
$$h\left(x\right) = \frac{1}{1+e^{-x}}$$$$\frac{\Delta h\left(x\right)}{\Delta x} = \frac{\Delta}{\Delta x}\left(1+e^{-x}\right)^{-1}$$$$\because \frac{\Delta}{\Delta x}x^{n} = -n\cdot x^{n-1} \wedge \frac{\Delta}{\Delta x}f\left(g\left(x\right)\right)= f'\left(g\left(x\right)\right) \cdot g'\left(x\right) \implies$$$$\frac{\Delta}{\Delta x}\left(1+e^{-x}\right)^{-1} = -\left(1+e^{-x}\right)^{-2}\left(-e^{-x}\right) = \frac{-e^{-x}}{-\left(1+e^{-x}\right)^{2}} = \frac{e^{-x}}{\left(1+e^{-x}\right)} \cdot \frac{1}{\left(1+e^{-x}\right)}$$$$= \frac{\left(1+e^{-x}\right)-1}{\left(1+e^{-x}\right)} \cdot \frac{1}{\left(1+e^{-x}\right)} = \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}}\right)\cdot \frac{1}{1+e^{-x}}$$$$= \left(1-\frac{1}{1+e^{-x}}\right) \cdot \frac{1}{1+e^{-x}} = \left(1-h\left(x\right)\right) \cdot h\left(x\right) \square$$%%time
log_reg_0 = trainer(classifer=LogisticRegression(random_state=0))
print()
print("Logistic Regression: Default")
display(pd.DataFrame.from_dict(log_reg_0['LogisticRegression'], orient='index'))
%%time
lr = LogisticRegression(penalty='l2', max_iter=500, random_state=0, solver='liblinear')
log_reg_1 = trainer(classifer=lr)
print()
print("Logistic Regression: Mindful Parameters")
display(pd.DataFrame.from_dict(log_reg_1['LogisticRegression'], orient='index'))
%%time
lr = LogisticRegression(penalty='l2', max_iter=500, random_state=0, solver='liblinear')
log_reg_1_1 = trainer(classifer=lr,X_train=X_train_sub, X_test=X_test_sub)
print()
print("Logistic Regression: Mindful Parameters Sub")
display(pd.DataFrame.from_dict(log_reg_1_1['LogisticRegression'], orient='index'))
%%time
lr_2 = LogisticRegressionCV(random_state=0, max_iter=200, penalty='l2', solver='liblinear')
log_reg_2 = trainer(classifer=lr_2)
print()
print("Logistic Regression with CV")
display(pd.DataFrame.from_dict(log_reg_2['LogisticRegressionCV'], orient='index'))
NEED: WRITEUP, VISUALIZE
%%time
rand_for_0 = trainer(classifer=RandomForestClassifier(random_state=0))
print()
print("Random Forest: Default")
display(pd.DataFrame.from_dict(rand_for_0['RandomForestClassifier'], orient='index'))
%%time
rand_for_1 = trainer(classifer=RandomForestClassifier(n_estimators=500, min_samples_leaf=25,random_state=0))
print()
print("Random Forest: Tuned")
display(pd.DataFrame.from_dict(rand_for_1['RandomForestClassifier'], orient='index'))
%%time
parameters = {'n_estimators': [100, 200, 500],
"min_samples_leaf": [5, 10, 20]}
rf_tune_0 = grid_tuner(classifier=RandomForestClassifier(random_state=0), parameters=parameters)
%%time
parameters = {'n_estimators': [150, 200, 250],
"min_samples_leaf": [3, 5, 7]}
rf_tune_1 = grid_tuner(classifier=RandomForestClassifier(random_state=0), parameters=parameters)
%%time
parameters = {'n_estimators': [225, 250, 275],
"min_samples_leaf": [2, 3, 4]}
rf_tune_2 = grid_tuner(classifier=RandomForestClassifier(random_state=0), parameters=parameters)
%%time
rand_for_2 = trainer(classifer=RandomForestClassifier(random_state=0, n_estimators=250, min_samples_leaf= 2))
print()
print("Random Forest: Gridded")
display(pd.DataFrame.from_dict(rand_for_2['RandomForestClassifier'], orient='index'))
NEED: WRITEUP, VISUALIZE
%%time
abc_0 = trainer(classifer=AdaBoostClassifier(random_state=0))
print()
print("Ada Boost Classifier: Default")
display(pd.DataFrame.from_dict(abc_0['AdaBoostClassifier'], orient='index'))
%%time
parameters = {'n_estimators': [200, 400],
'learning_rate': [1, 1.5]}
abc_tune_0 = grid_tuner(classifier=AdaBoostClassifier(random_state=0), parameters=parameters)
%%time
parameters = {'n_estimators': [400, 800, 1000],
"learning_rate": [1.4, 1.6, 1.8]}
abc_tune_1 = grid_tuner(classifier=AdaBoostClassifier(random_state=0), parameters=parameters)
%%time
parameters = {'n_estimators': [700, 800, 900],
"learning_rate": [1.5, 1.6, 1.7]}
abc_tune_2 = grid_tuner(classifier=AdaBoostClassifier(random_state=0), parameters=parameters)
%%time
parameters = {'n_estimators': [750, 800, 850],
"learning_rate": [1.55, 1.6, 1.65]}
abc_tune_3 = grid_tuner(classifier=AdaBoostClassifier(random_state=0), parameters=parameters)
%%time
rf_tuned = RandomForestClassifier(n_estimators=250, min_samples_leaf=2,random_state=0)
abc_tune_3 = AdaBoostClassifier(random_state=0, base_estimator=rf_tuned, n_estimators=400, learning_rate=1.5)
abc_trained = trainer(classifer=abc_tune_3)
print()
print("Ada Boost Classifier: Tuned with RF Tuned Classifier")
display(pd.DataFrame.from_dict(abc_trained['AdaBoostClassifier'], orient='index'))
%%time
rf_tuned_1 = RandomForestClassifier(n_estimators=250, min_samples_leaf=2,random_state=0)
abc_tune_4 = AdaBoostClassifier(random_state=0, base_estimator=rf_tuned_1, n_estimators=800, learning_rate=1.6)
abc_trained_1 = trainer(classifer=abc_tune_4)
print()
print("Ada Boost Classifier: Tuned with RF Tuned Classifier")
display(pd.DataFrame.from_dict(abc_trained_1['AdaBoostClassifier'], orient='index'))
%%time
abc_tune_5 = AdaBoostClassifier(random_state=0, n_estimators=400, learning_rate=1.5)
abc_trained_2 = trainer(classifer=abc_tune_5)
print()
print("Ada Boost Classifier: Tuned")
display(pd.DataFrame.from_dict(abc_trained_2['AdaBoostClassifier'], orient='index'))
NEED: WRITEUP, VISUALIZE
%%time
gb_0 = GradientBoostingClassifier(random_state=0)
gb_0_trained = trainer(classifer=gb_0)
display(pd.DataFrame.from_dict(gb_0_trained['GradientBoostingClassifier'], orient='index'))
%%time
gb_tune_0 = GradientBoostingClassifier(random_state=0, n_estimators=500)
gb_tune_train_0 = trainer(classifer=gb_tune_0)
print()
print("Gradient Boost Classifier: Tuned")
display(pd.DataFrame.from_dict(gb_tune_train_0['GradientBoostingClassifier'], orient='index'))
%%time
gb_tune_1 = GradientBoostingClassifier(random_state=0, n_estimators=500, max_depth=5)
gb_tune_train_1 = trainer(classifer=gb_tune_1)
print()
print("Gradient Boost Classifier: Tuned")
display(pd.DataFrame.from_dict(gb_tune_train_1['GradientBoostingClassifier'], orient='index'))
%%time
parameters = {'n_estimators': [250, 500, 750],
"learning_rate": [0.01, 0.5, 1],
"min_samples_leaf": [1, 3, 5],
"max_depth": [3, 7, 11],
"max_features": [32, 64, 95]}
gb_grid_train_0 = grid_tuner(classifier=GradientBoostingClassifier(random_state=0), parameters=parameters)
NEED: WRITEUP, TUNING, VISUALIZE
%%time
xgb_0 = xgb.XGBClassifier(random_state=0)
xgb_train_0 = trainer(classifer=xgb_0)
print()
print("Extreme Gradient Boost Classifier: Default")
display(pd.DataFrame.from_dict(xgb_train_0['XGBClassifier'], orient='index'))
%%time
xgb_1 = xgb.XGBClassifier(random_state=0, n_estimators=500)
xgb_train_1 = trainer(classifer=xgb_1)
print()
print("Extreme Gradient Boost Classifier: Tuned")
display(pd.DataFrame.from_dict(xgb_train_1['XGBClassifier'], orient='index'))
NEED: WRITEUP, TUNING, VISUALIZE
%%time
knn_0 = trainer(classifer=KNeighborsClassifier())
print()
print("KNN Classifier: Default")
display(pd.DataFrame.from_dict(knn_0['KNeighborsClassifier'], orient='index'))
%%time
knn_1 = trainer(classifer=KNeighborsClassifier(n_neighbors=int(np.sqrt(len(X_trans)))))
print()
print("KNN Classifier: SQRT Neighbors")
display(pd.DataFrame.from_dict(knn_1['KNeighborsClassifier'], orient='index'))
NEED: VISUALIZATION
#Put all best results together:
best_results = {'LogisticRegressionCV': log_reg_2['LogisticRegressionCV'][2],
'RandomForestClassifier': rand_for_2['RandomForestClassifier'][2],
'AdaBoostClassifier': abc_trained_2['AdaBoostClassifier'][2],
'GradientBoostingClassifier': gb_tune_train_0['GradientBoostingClassifier'][2],
'XGBClassifier': xgb_train_0['XGBClassifier'][2],
'KNeighborsClassifier': knn_1['KNeighborsClassifier'][2]}
best_res_df = pd.DataFrame.from_dict(best_results, orient='index')
best_res_df.sort_values(by=['f_test'], ascending=False)
The Gradient Boosting Classifer evaluates at the highest F-0.5 score of 0.76
on the test set. The Random Forest Classifier may be overfitting, seeing the F-0.5 score on the training set vs the testing set compated to the rest of the models.
An important task when performing supervised learning is determining which features provide the most predictive power.
By focusing on the relationship between only a few crucial features and the target label, I can simplify my understanding of the phenomenon, which is most always a useful thing to do.
In the case of this project, that means I wish to identify a small number of features that most strongly predict whether an individual makes at most or more than $50,000.
The top-5 factors in predicting if a person makes more than 50k annually are:
model = GradientBoostingClassifier(random_state=0, n_estimators=500).fit(X_train, y_train)
importances = model.feature_importances_
vs.feature_plot(importances, X_train, y_train)
I can now compare how the model performs when I remove all features than those that contribute the larges amount of prediction power.
# Reduce the feature space
X_train_reduced = X_train[X_train.columns.values[(np.argsort(importances)[::-1])[:5]]]
X_test_reduced = X_test[X_test.columns.values[(np.argsort(importances)[::-1])[:5]]]
clf = (clone(model)).fit(X_train_reduced, y_train)
best_predictions = model.predict(X_test)
# Make new predictions
reduced_predictions = clf.predict(X_test_reduced)
# Report scores from the final model using both versions of data
print("Final Model trained on full data\n------")
print("Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, best_predictions)))
print("F-0.5 Score on testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5)))
print("\nFinal Model trained on reduced data\n------")
print("Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, reduced_predictions)))
print("F-0.5 Score on testing data: {:.4f}".format(fbeta_score(y_test, reduced_predictions, beta = 0.5)))
The prediction power is reduced, but this model trained much faster than with all of the factors. Because the predictive power is already not incredibly strong, this reduction in prediction power for a gain in speed doesn't seem worth it. If the data were much larger, orders of magnitude, I may change my evaluation.
At this point, I prefer the model with all factors, even if it is a little slower than with only the 5 most influential factors.
... and that's it!
- Recieved
- Evaluated skew
- Examined correlations and Thiel's Uncertainty Coefficient
- F-0.5 Score prefering a high precision model
- Logarithmic, Normalized
- Ensured distribution of positive and negative classes were similar to those in the initial data
- Selected Gradient Boosting Classifier
Deploying the model by saving and tying it to a software solution for a customer could be a useful next step.
# # Full Page - Code
!jupyter nbconvert donor_class.ipynb --output class_code --reveal-prefix=reveal.js --SlidesExporter.reveal_theme=serif --SlidesExporter.reveal_scroll=True --SlidesExporter.reveal_transition=none
# # Full Page - No Code
!jupyter nbconvert donor_class.ipynb --output class_no_code --reveal-prefix=reveal.js --SlidesExporter.reveal_theme=serif --SlidesExporter.reveal_scroll=True --SlidesExporter.reveal_transition=none --TemplateExporter.exclude_input=True
# # Slides - No Code
!jupyter nbconvert --to slides donor_class.ipynb --output class_slides --TemplateExporter.exclude_input=True --SlidesExporter.reveal_transition=none --SlidesExporter.reveal_scroll=True